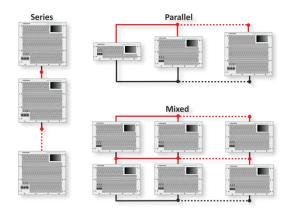


G5.UNV Universal Regenerative DC Source Sink Series


The G5.UNV series is bidirectional regenerative and can operate in CV, CC, CP, CR, and Ri-Sim control modes. It is universally applicable and therefore suitable for all industrial and scientific applications in laboratories and on test benches. The modular and finely graded G5.UNV series is characterized by highly dynamic response times, adjustable filter time constants, and a wide current-voltage range with an auto-ranging factor 3. The power supplies of the G5.UNV series are equipped with function and software modules for the simulation of energy storage devices and solar arrays as well as for the testing and evaluation of batteries and fuel cells. The engineer therefore has a power supply available that easily covers a wide range of applications.

Device Types

Voltage	Power	Current	Height	Order Code	
V	kW	Α	U		
*080	9	-338338	4	G5.UNV.9.80.338	
*080	18	-676676	4	G5.UNV.18.80.676	
*080	27	-10141014	7	G5.UNV.27.80.1014	
*080	36	-13521352	7	G5.UNV.36.80.1352	
*080	45	-16901690	10	G5.UNV.45.80.1690	
*080	54	-20282028	10	G5.UNV.54.80.2028	
0160	18	-338338	4	G5.UNV.18.160.338	
0160	36	-676676	7	G5.UNV.36.160.676	
0160	54	-10141014	10	G5.UNV.54.160.1014	
0240	27	-338338	7	G5.UNV.27.240.338	
0240	54	-676676	10	G5.UNV.54.240.676	
0320	36	-338338	7	G5.UNV.36.320.338	
0500	9	-5454	4	G5.UNV.9.500.54	
0500	18	-108108	4	G5.UNV.18.500.108	
0500	27	-162162	7	G5.UNV.27.500.162	
0500	36	-216216	7	G5.UNV.36.500.216	
0500	45	-270270	10	G5.UNV.45.500.270	
0500	54	-324324	10	G5.UNV.54.500.324	
01000	18	-5454	4	G5.UNV.18.1000.54	
01000	36	-108108	7	G5.UNV.36.1000.108	
01000	54	-162162	10	G5.UNV.54.1000.162	
01500	27	-5454	7	G5.UNV.27.1500.54	
01500	54	-108108	10	G5.UNV.54.1500.108	

^{*}also as 60 V SELV version for single or parallel operation available, order code example: G5.UNV.9.**60**.338

Modular and Easily Scalable Systems

Figure 1: Modular concept for easy power and voltage increase by parallel, series, and mixed operation. The parallel configuration allows even an operation of different power levels, e.g., 18, 36, and 54 kW modules, in one system.

The output of an individual power supply is in the range from 0...9 kW to 0...2000+ kW, up to 3000 VDC. The advantageous modularity of REGATRON power supply solutions allows the system to be easily adapted to ever changing test requirements. It is possible to reconfigure between parallel, series, and mixed operation.

Moreover the system can be expanded with additional power supply units or to be split into smaller units.

Whether for single devices or powerful multi-device multi-unit systems, REGATRON also offers turnkey cabinet solutions or project specific system integration according to customer specifications.

Therefore, the purchase of a REGATRON power supply is a solid investment for the future.

Applications and Features

The G5.UNV series is the fully equipped all-rounder! It contains all necessary function and software modules for the simulation of energy storage devices and solar arrays as well as for the testing and evaluation of batteries and fuel cells.

Various excellent features such as switchable filter time constants and adjustable controller settings as well as the integrated powerful 8-channel digital osciloscope assist the user in quickly and easily achieving optimal system behavior for his application. The G5.UNV series also offers the possibility to store, edit, and recall any device configuration on board the power supply.

Time-Based Function Generator

The TFE time-based function generator allows programming either through G5.Control operating software, HMI touch display, or CANmp interface.

- Time-dependent functions U = f(t), I = f(t),
 P = f(t): sine, triangle, or square as well as user-defined data points. Import and export through csv files supported
- Ramp function for amplitude and offset changes
- Small signal modulation up to 10 kHz

Solar Array Simulation

As a PV simulator the G5.UNV series features especially low capacitance values in the output filter stage, switchable earth leakage resistors, and the versatile application software SASControl. The powerful platform for R+D and testing of PV inverters fully complies with the efficiency measurement procedures for maximum power point tracking (MPPT) in inverters as described in EN 50530. Core of the application software SASControl is a versatile script programming system which allows the easy implementation of individual programming sequences. Report generation of measured data is included.

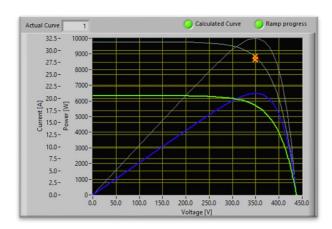


Figure 2: SASControl Live Viewer - always up to date.

Battery Simulation

As a battery simulator the G5.UNV series realistically and dynamically simulates both the electro-chemical and electrical properties of a battery type in charge and discharge mode. Other features include high data resolution and options for meeting high safety standards for operators. The real-time computing process of the application software BatSim perfectly matches the internal timing of the DC power supply. Therefore, an optimum computing rate is achieved leading to very short response times even in cases of steep changes in charge/discharge currents. Each battery type reacts in a specific manner to charge and discharge currents in terms of state of charge, cell voltage, ohmic and parametric losses, and polarization effects. These dependencies are considered by specific mathematical models used in the REGATRON BatSim software/firmware. The operator can fine tune the model with several well-defined parameters to adjust the simulation to a user's requirement.

Models of the following battery types are available for configuration: Li-ion, lead-acid, NiMH, and NiCd.

Figure 3: BATSim configuration $-\ a$ few clicks away from the required battery simulation.

Battery Module / Pack-Testing Features

As a battery tester the G5.UNV series has an exceptional electrical performance that offers several advantages for battery testing applications:

- Voltage accuracy of <0.02% FS
- Current accuracy in the range 0.025...0.085% FS depending on model
- Additional high-resolution current measurement range from -10 to 10% FS with an accuracy of <0.005% FS
- Current rise time in the 50...200 μs range
- Parameterizable to avoid overshoot
- Current ripple modulation up to 10 kHz

In addition, the G5.UNV provides important features for user safety, power supply, and battery protection. It avoids:

- Reverse-polarity problems
- Arcing and high inrush current when connecting the battery to the DC terminals even at unmatched voltage levels
- Deep battery discharge at voltage off state (DC port impedance >10 MΩ)

The application software BatControl allows selecting and running so-called BatScripts. These scripts automate the manually given commands to the G5 Battery Tester and allow the running of these commands according to defined schedules.

- Define charge and discharge algorithms
- Run drive cycles (according to own or already defined standards)
- Repeat previously recorded discharge/charge data

G5.UNV Series as P-HIL Power Amplifier

Power-hardware-in-the-loop (P-HIL) simulation integrates physical hardware and software models in a closed-loop simulation, offering versatile opportunities to investigate the behavior of complex systems at different parameter settings.

A typical P-HIL setup includes a fast real-time computer driving a power amplifier. The G5.UNV series is best suited for this purpose due to its high dynamics and a fast analog port. Time analog-in to power output: typical 90 μs

Fuel Cell Simulation

For use as fuel cell simulator the G5.UNV series utilizes the integrated AAP function. The AAP application area programming feature allows to set the DC output voltage or current or power as a function of any of the input values I_{DC} , U_{DC} , or P_{DC} . The functional relationship is given by a user-defined curve whose values are managed by CSV import/export. In this way, a wide variety of nonlinear electrical two-pole networks can be defined, e.g., photovoltaic arrays or fuel cell curves. As an example, Figure 4 shows the typical fuel cell characteristics with a voltage/current dependence. Embedded calculation on board the G5.UNV assures real-time simulation.

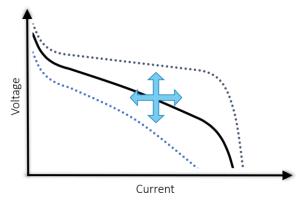
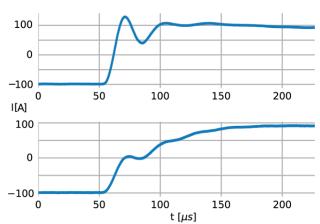



Figure 4: AAP curve with fuel cell characteristic U = f(I).

Dynamics

Maximum speed or minimum overshoot? Figure 5 shows that the dynamic parameters of the G5.UNV series can be easily adapted to a specific task.

Figure 5: Parameterization example: of a 36 kW, 1000 V, 108 A device: Set-value step current -97...97 A@333VDC in <50 μ s with overshoot (top), in <200 μ s w/o overshoot (bottom). The dynamic behavior is comparable across the series of G5 devices from low voltage to high voltage

General Dynamic Data

rise/fall time	voltage 090%	150220 μs		
set-value step	current -9090%	3570 μs		
response time	CV, recovery within	50290 μs		
load step	0.5% set value			

Accuracy

The G5.UNV series has an exceptional voltage accuracy of 0.01...0.02% FS. The current accuracy is in the range of 0.025...0.085% FS depending on the model. There is even an additional high-resolution current measurement range from -10 to 10% FS with an accuracy of better than 0.005% FS.

Control Modes

CV constant voltage

CC constant current

CP constant power

CR constant resistance

Ri internal resistance simulation

Interfaces

Ethernet and USB

To connect with:

- G5.Control the operating and maintenance software
- SASControl the application software for PV simulation
- BatSim the application software for battery simulation
- BatControl the application software for battery testing
- API .NET programming, e.g., by LabView, Python, Matlab, or REST interface

I/O Port

Interface featuring analog and digital signals used for set and actual values or operating states.

Grid Connection

The wide-band AC input accepts all common AC grid systems and has an active power factor correction.

AC Grid 380...480 VAC ±10% at 50/60 Hz

PF 0.99

Efficiency 91...96%, depending on model

Options

Software and Control

HMI / RCU

The HMI built into the front panel allows comprehensive and convenient operation of the power supply via touch display.

With the remote control unit (RCU) it is possible to control the device or system from a distant location in the same manner as with the HMI.

Figure 6: Intuitive control by HMI touch display. Everything you need at a glance.

CAN Interface

The CAN multi-protocol (CANmp) interface has a 1 kHz data rate, a 16-bit resolution and is adaptable to any proprietary CAN bus. In addition, it supports dbc file handling.

User Safety

- Integrated safety relay (ISR) for increased emergency stop reliability supporting performance level PL c / PL e according to EN ISO 13849
- Discharge of AC filter (XCD), mandatory for mobile use of the device. XCD ensures a discharge time of the AC filter <1 s as required by EN 62477-1
- Based on the 80 V models, also a 60 V SELV version is available
- Various terminal protection covers

The different protective covers are designed for integration into 19" rack systems or for use as a tabletop device. The cover for cabinet integration provides protection against accidental contact, whereas the cover for the tabletop version requires a touchproof protection in accordance with standard EN 62477-1.

Voltage V	Power kW	DC-cover acc. contact	DC-cover touchproof	AC-cover touchproof	Tabletop use allowed	Order Code
60160	≤18	•	• 0		✓	G5.PAC.DCAC.1
60320	≥27	•	1		ı	
5001000	≤18		•	0	√	G5.PAC.AC.1
5001500	≥27		•	0	✓	G5.PAC.AC.2

- included
- O optional, mandatory for tabletop use

Rack-Integrated System Solutions

- Mobile rack solutions up to IP54
- Insulation monitoring: remote activation of the insulation measurement, actual insulation value, and warning/error status are provided by CANmp interface or by optional HMI
- Easy reconfiguration between parallel, series, and mixed operation

Figure 7: REGATRON's rack-integrated turn-key system solutions, e.g., 72 kW (left) and 162 kW (right) power levels. Various types of AC/DC connectors and cables allow for comfortable handling. Third-party product integration and numerous safety options are additional features.

Environmental Conditions

Front-panel-mounted air filter (AirFilter), recommended for use in dusty environments.

Important Features of the G5.UNV Series

Technology

- Technologically advanced, fast switching, compact 19-inch power supplies
- High control dynamics in the 100...200 μs range
 even at higher power levels up to 2000+ kW
- Exceptional accuracy and an additional highresolution measurement range
- Wide current-voltage range with an autoranging factor 3
- CV, CC, CP, CR, and Ri-Sim control modes
- Regenerative and highly efficient, resulting in significant reduction of energy consumption and heat dissipation

System Control and Options

- Operating software, extended analysis, parameterization options, and calibration
- Application software with visualization, programming, and data logger
- Powerful application programming interfaces (APIs)

System Capability

- Modular and easy scalable systems
- Parallel, series, and mixed operation with a digital high-speed bus
- Simple multi-unit configuration with the operating software
- Easy rack mounting
- Optional safety features such as 2-channel safety interface and insulation monitoring
- Turn-key cabinet solutions or project-specific system integration according to customer specification

innovation

This product is developed, produced and tested according to ISO 9001 by REGATRON.

For detailed technical information, contact REGATRON or your local sales partner.

Regatron AG
Regatron Inc.

Feldmuehlestrasse 50
9400 Rorschach
SWITZERLAND
Sales@regatron.com
www.regatron.com
www.regatron.com
www.us.regatron.com

All product specifications and information herein are subject to change without notice.

Filename: PD_G5.UNV_EN_221108

Class: Public

REGATRON DC & AC Power Supplies: Modular · Precisely Engineered · Technologically Advanced

